The DIOS framework for optimizing infectious disease surveillance: Numerical methods for simulation and multi-objective optimization of surveillance network architectures
Disease surveillance systems are essential for understanding the epidemiology of infectious diseases and improving population health. A well-designed surveillance system can achieve a high level of fidelity in estimates of interest (e.g., disease trends, risk factors) within its operational constraints. Currently, design parameters that define surveillance systems (e.g., number and placement of the surveillance sites, target populations, case definitions) are selected largely by expert opinion and practical considerations. Such an informal approach is less tenable when multiple aspects of surveillance design—or multiple surveillance objectives—need to be considered simultaneously, and are subject to resource or logistical constraints. Here we propose a framework to optimize surveillance system design given a set of defined surveillance objectives and a dynamical model of the disease system under study. The framework provides a platform for in silico surveillance system design, and allows the formulation of surveillance guidelines based on quantitative evidence, tailored to local realities and priorities. The framework is designed to facilitate greater collaboration between health planners and computational and data scientists to advance surveillance science and strengthen the architecture of surveillance networks.