Spatially-targeted tuberculosis screening has limited impact beyond household contact tracing in Lima, Peru: A model-based analysis

transmission model

Joshua Havumaki, Joshua L Warren, Jon Zelner, Nicolas A Menzies, Roger Calderon, Carmen Contreras, Leonid Lecca, Mercedes C Becerra, Megan Murray, Ted Cohen



Mathematical models have suggested that spatially-targeted screening interventions for tuberculosis may efficiently accelerate disease control, but empirical data supporting these findings are limited. Previous models demonstrating substantial impacts of these interventions have typically simulated large-scale screening efforts and have not attempted to capture the spatial distribution of tuberculosis in households and communities at a high resolution. Here, we calibrate an individual-based model to the locations of case notifications in one district of Lima, Peru. We estimate the incremental efficiency and impact of a spatially-targeted interventions used in combination with household contact tracing (HHCT). Our analysis reveals that HHCT is relatively efficient with a median of 40 (Interquartile Range: 31.7 to 49.9) household contacts required to be screened to detect a single case of active tuberculosis. However, HHCT has limited population impact, producing a median incidence reduction of only 3.7% (Interquartile Range: 5.8% to 1.9%) over 5 years. In comparison, spatially targeted screening (which we modeled as active case finding within high tuberculosis prevalence areas 100 m2 grid cell) is far less efficient, requiring evaluation of ≈12 times the number of individuals as HHCT to find a single individual with active tuberculosis. Furthermore, the addition of the spatially targeted screening effort produced only modest additional reductions in tuberculosis incidence over the 5 year period (≈1.3%) in tuberculosis incidence. In summary, we found that HHCT is an efficient approach for tuberculosis case finding, but has limited population impact.